
CS454 Assignment 3 Document

Alfred Chan (20392255)

December 2, 2017

Overview

This document is seperated into 6 major sections: the first halves talks
about what has been done, and the second halves talks about how I han-
dle rpcCacheCall. Since I attempted the bonus, the system does more
work to maintain a certain degree of synchronization in every request, though
these extra works do not change rpcCall’s behavior. In particular, each
node, which can be the binder, servers and clients, contains a local name
directory that maps a machine identifier (ipv4 address and port number) to
unique integer ids generated by the binder.

1 Class Definitions

This section describes each major class in the system. In addition to classes,
a file named “common.hpp” contains utility methods that is shared amongst
most classes. These utility methods are for converting between C++ struc-
tures and raw data.

• struct Name: this simple structure contains two integers that represent
an ipv4 address and a port number. Obviously, this structure is used as
a key type for std::map in the name directory, so there is a operator
overload of “<” that is based on std::pair’s “<” overload.

• struct Function: similarly to struct Name, this structure is also
used as a key type in the name directory. This structure is composed
of a function’s name (in std::string), and a list of argument types

1



(in std::vector<int>). Again, the comparison operator is almost
free, but with one catch: the equivalence of two function signitures
disregard array cardinality (i.e. an array of size 1 is treated the same
as an array of size 100), so to address this problem the comparison
operator call Function::to signiture() to create another copies
of the signitures whose array size can only be 0 (scalar) or 1 (array).

Notice that overloading operator< for Function effectively solves
function overloading for the RPC system, since equivalence of argument
types is the same as item-by-item comparison of std::vector<int>,
given that the argument types are inserted to the vector in the same
order as in argTypes.

Of course, when the server calls a skeleton it needs to know the actual
cardinality of the array types. This means the server needs to to store
the original function signiture along with the modified version.

• struct Postman::Message: this structure is a quadruple that con-
tains

– the version number (unsigned int) of the name directory

– the size of the message (unsigned int), which is used to allo-
cate buffers

– the message type from the enum Postman::MessageType

– and finally the message contents (std::string)

All send methods in Postman are basically message composers, and
they uniformly pass the created message to the function Postman::send(int,
Message).

• struct Postman::Request: this structure is a pair of a file descrip-
tor and a Postman::Message. The purpose of this structure is to
be packed within a std::queue, so that the caller can poll request
from Postman.

In retrospect, storing the fd was an oversight, because my original in-
tention was to buffer requests and allow the program to handle them
at any time. This was true in my original codes, because connections
last for the whole program execution. However, I later changed the
duration of connections to be based on the scope that the connection

2



was established (thanks to C++’s RAII), so all requests must be han-
dled while connections are still valid. The intention is to minimize the
number of active connections for the binder.

• class Sockets: this class provide type-safe C++ bindings for the C-
based network library. All methods are unsynchronized, because it is
intended to be a private object of another class. Most of the codes in
this class are inherited from assignment 2. I wanted this class to be a
silver bullet for approaching Unix network sockets, but obviously it’s
flawed. In any case, this class is much more robust than the one I wrote
for CS456, since I did it in C.

• class Postman: this major class has 2 functionalities:

– to buffer raw messages from Sockets and to handle marshalling
of these raw messages by turning them into Postman::Message,
and then later into Postman::Request

– to provide synchronized public access to Sockets for connec-
tions, to the request queue, and to create messages and feed them
to the internal method Postman::Send(int, Message).

In other words, this class is the “workhorse” of network-related codes.

• class NameService: this class is responsible for maintaining various
mappings that allows callers to resolve names and to get suggestions
about available servers. The mappings include:

– a bidirectional mapping of Name’s and int ids. The mapping
is simply based on two separate maps: std::map<Name,int>
and std::map<int,Name>

– a mapping of Function’s to pairs of std::set<int> ids, and
an integer pivot, where the pivot decides scheduling using round
robin. Note that each function has its own pivot. Also, the pivots
are local values that are not sychronized along with the name
directory, so the binder can have different pivots than the server
and the clients.

In additional to name resolving, NameService has an internal log
which can only affect by the binder. It uses a very simple version

3



of timestamp ordering, such that there is no conflict and no abort.
Clients and servers update their own name directory through the logs
that come from every reply (even not from the binder).

• class Global: this class is located in rpc.cpp, which takes advan-
tages of RAII to serve initialized global variables for the C-functions
in rpc.h. This class is shared between the client codes and the server
codes. For the server, Global manages a mapping of Function
(modified) to pairs of a actual Function object and a skeleton func-
tion.

• class Task: this structure has a simple run() method that allows
servers to run a call request. All data are immutable copies of many
struct/class described earliar.

• class Tasks: this is basically a synchronized queue of Task’s. Each
server has one. It manages worker threads which basically wait for new
Task’s by a semaphore.

In addition, Tasks provides a terminate function, which changes
the is terminate flag and raise the semaphore by MAX THREADS,
allowing every threads to wake up and terminate by themselves; of
course, terminate() blocks until it finished joining the threads.

• class ScopedConnection: this is a simple class that establishes a
connection through Postman, and later when the object is out of scope,
the destructor disconnects the connection through Postman.

• class ScopedLock: this is similar to ScopedConnection, except
this class handles the locking/unlocking of a pthread mutex.

2 Protocol

As described earlier, every Postman::Message is of the form

nameservice_version msg_size msg_type msg_content

The following subsections describe msg type and the contents within msg content.
All msg type’s are defined within Postman in an enum called MessageType.
Anything related to the name directory will be explained in a later section,

4



though in a nutshell, nameservice version allow the receiver to deter-
mine which portion of the logs should be attached in a reply. Notice that
all replies except CONFIRM TERMINATE has partial logs attached, I
will refer them as log delta.

2.1 Request: ASK NS UPDATE

This request can happen for the servers when a new server joins. This is dis-
cussed in details in NEW SERVER EXECUTE. The message content is empty,
because all message already has a local version number of name directory.

2.2 Reply: NS UPDATE SENT

The message content contains log delta, which is used by servers/clients
to update their local name directory.

2.3 Request: I AM SERVER

This request is sent within rpcInit(), and it is delivered to the binder.
The message content is the port number that servers use to listening incoming
messages. This request is needed because I decided to make connections last
within a scope, and the binder needs to start connections to servers. In effect,
this request register a server in the binder’s name directory.

2.4 Reply: SERVER OK

This is binder’s reply to I AM SERVER. The message contains

server_id log_delta

The server id is generated by the binder, which the server uses to set its
global variable Global::server id. Effectively, a server is a server if and
only if server id 6= static cast<unsigned int>(-1).

2.5 Request: Register

Only the server can send this message. This request register a unique
Function to the binder. All subsequent register for methods that has the

5



same signiture, determined by operator<, will cause the server to update
the skeleton locally – no message is sent. The message contents contain

server_id fn_name_len fn_type_len fn_name fn_types

where fn name is the name of the function and fn types are the types
of function (as integers), fn name len and fn type len are lengths of
fn name and fn type, respectively – I will refer to this quadruple as the
binary representation of Function.

2.6 Request: LOC REQUEST

This message can only be sent by a client, who wants to ask the binder for
a server suggestion. The message contents contain just the binary represen-
tation of a Function.

2.7 Reply: LOC REQUEST REPLY

This is binder’s reply to a client’s location request. If the binder has a
suggestion, then the message contents contain

true log_delta server_id

The client will update the name directory, as always for all replies, with
log delta, and then it resolves server id using its local name directory
– this must succeed since log delta brings client to the same version of
the name directory as the binder’s. If the binder doesn’t have a suggestion,
then the message conents contain

false log_delta NO_SERVER_AVAILABLE

where NO SERVER AVAILABLE is an error number (arguably unecessary).

2.8 Request: EXECUTE

This is called by the client to the server for a task execution. The message
contents contain

func args

where func is the binary representation of Function, and args contains
0 or more of arrays (scalars are treated as arrays of size 1) that are input
arguments.

6



2.9 Reply: EXECUTE REPLY

This is the server’s execution reply to the client. The message contains

retval args

where retval is the integer return value of the RPC call. If the skeleton
returns an error, retval will be SKELETON FAILURE (see later sections).
On the other hand, args contains the output arguments, which overwrite
the corresponding items in the same args that the client used to send the
execute request.

2.10 Request: TERMINATE

This request is sent by the client to the binder. When the binder gets this
message, it send the a terminate request to the servers. Then the servers will
ask for confirmation to the binder. The message contents contain an empty
string.

2.11 Request/Reply: CONFIRM TERMINATE

This message is a bit more interesting. It serves as both request and reply,
both ways, from servers to the binder as a request, and then from the binder
to servers as a reply. The message contains

is_terminate

Notice is terminate is only used when servers get the binder’s reply. Since
the reply comes from the binder, if is terminate is true, then the termi-
nate request is geniune, and servers will proceed to termination. However,
the binder doesn’t follow the specification about terminating after
all servers have terminated; the binder terminates when it replies
CONFIRM TERMINATE to all servers. I guess this is design decision due
to ScopedConnection, because every connection must disconnect at the
end of any RPC methods in rpc.h, if not earlier. I chose to do it this way
because I would like to keep the number active connections low, so that the
binder and servers can serve more requests. After all, there is an upper limit
in the number of connections that a socket can listen to. The downside is
that the binder no longer knows if a server is active anymore, unless the
binder tries to connect to a potentially dead server.

7



2.12 Request/Broadcast: NEW SERVER EXECUTE

The message content is an empty string. The server sent this request to
the binder when rpcExecute() runs. When the binder gets this request,
the binder will broadcast this request to all servers. If a server is dead, the
the binder would remove it from the binder’s name directory. If servers are
alive, then the servers would send a ASK UPDATE NS request to the binder.
Therefore, the servers’ name directory will become mostly (not completely)
up-to-date.

3 System Flow

The flow of the system goes as follows.

3.1 Client

Ignoring rpcCacheCall, the system goes as follows.

• The client initialize Global variables.

• The client calls rpcCall.

• rpcCall asks the binder for a server suggestion.

• If the binder finds a good suggestion, then reply the client with the
server’s id. Otherwise, send a failure. In either cases, the binder at-
taches partial logs of the name directory based on client’s version in
the request header.

• If the client doesn’t get a valid suggestion, then end rpcCall. Oth-
erwise, the client send an execute request to the server.

• The server gets the request, run it, and then reply to the client. The
server also send partial logs to the client, usually of size 0, because the
client should have up-to-date name directory due to interactions with
the binder.

• The client applies to logs, get the result, and then end rpcCall.

• It is possible that later the client calls for a terminate request to the
binder.

8



3.2 Server

Generally, the flow goes as follows.

• The server initialize Global variables and call rpcInit separately.

• During rpcInit, the server sends a I AM SERVER request to the
binder and wait for its id in a SERVER OK reply.

• Then the server registers functions.

• Then the server run rpcExecute. At this point, the server sends a
NEW SERVER EXECUTE to the binder, and the binder will broadcast
this request to all servers, forcing them to send a ASK NS UPDATE,
which updates all servers’ name directory. Notice that it is possible
for the binder to catch some dead servers, which causes the binder
to remove them from its name directory, effectively incrementing the
version. Thus, it is a possibility that not every server will be syn-
chronized to the same, latest version. However, we will see in the
last section that this is ok.

• Meanwhile, the server may get a terminate request from anyone. Thus,
it will ask the binder for confirmation through a CONFIRM TERMINATE
request. If the binder agrees the confirmation, then the server will
call Tasks::terminate(), which is a blocking call that may not
necessarily halt. This happens when a thread runs a long-
running process or an infinite loop. Once all tasks end, the server
will exit gracefully.

3.3 The Binder

Unlikely clients/servers, requests can arrive to the binder in any order, but
the binder handles them in a gigantic switch statement in a sequential man-
ner. In particular, the binder handles the following requests:

• I AM SERVER

• REGISTER

• LOC REQUEST

9



• NEW SERVER EXECUTE

• CONFIRM TERMINATE

• ASK NS UPDATE

4 Error Numbers

The following errors/warnings are defined in an enum in common.hpp.

• EXECUTE WITHOUT REGISTER (2): this is a warning that the server
runs rpcExecute without registering any functions. In case this hap-
pens, rpcExecute immediately terminates and return this warning.

• SKELETON UPDATED (1): this warnings that the server re-registers a
method, and only the skeleton is updated.

• OK (0): this means successful.

• BAD FD (-1): this happens when Sockets couldn’t create a socket.

• BINDER UNAVAILABLE (-2): the binder is down.

• CANNOT ACCEPT CONNECTION (-3): this happens when Sockets
cannot accept a connection.

• CANNOT BIND PORT (-4): this happens when Sockets cannot bind
a port.

• CANNOT CONNECT TO SERVER (-5): this happens when a client can-
not connect to a server.

• CANNOT LISTEN PORT (-6): the binder/server cannot set a port to
listen to incoming messages.

• CANNOT RESOLVE HOSTNAME (-7): the local name directory (binder/-
clients/servers) cannot find the hostname.

• CANNOT START CONNECTION (-8): binder/clients/servers cannot start
a connection.

• CANNOT WRITE TO SOCKET (-9): cannot write to a socket.

10



• FUNCTION ARGTYPES ARE INVALID (-10): argTypes is NULL

• FUNCTION NAME IS INVALID (-11): functions whose name is null,
or not 0 < length ≤ 63 (this excludes the null terminator). Notice
valid names must have a length that is strictly greater than 0.

• FUNCTION NOT REGISTERED (-12): client tries to call a function that
a server did not register.

• HAS ALREADY INIT SERVER (-13): the server calls rpcInit more
than once. This error number is returned by rpcInit.

• HAS RUN EXECUTE (-14): the server attempts to run rpcExecute
more than once.

• NOTHING TO RECEIVE (-15): select() tells Sockets to fill up the
read buffer, but there’s nothing to fill.

• NOTHING TO SEND (-16): select() tells Sockets to clear the write
buffer, but there’s nothing to write.

• NOT A CLIENT (-17): a server (i.e. rpcInit() has run) tries to run
client methods: rpcCall, rpcCacheCall, and rpcTerminate

• NOT A SERVER (-18): a client tries to run server methods: rpcInit,
rpcRegister, and rpcExecute.

• NO SERVER AVAILABLE (-19): the name directory cannot find a server
to complete requests.

• REMOTE DISCONNECTED (-20): the remote machine disconnected be-
fore the calling machine gets a reply.

• SKELETON FAILURE (-21): the skeleton function returns a negative
value.

• SKELETON IS NULL (-22): the provided skeleton is a NULL pointer.

• SERVER HAS NO AVAIL THREADS (-23): the server rejects a request
because it doesn’t have any free worker threads. This only happens
when you call rpcCacheCall, because it defies round-robin.

11



• TERMINATING (-24): this represents the server is terminating – this is
probably not a “public-facing” errno.

• UNREACHABLE (-100): unreachable codes reached; in other words, gg.

5 Name Directory And rpcCacheCall

To (mostly) synchronize name directories, each machine contains a local in-
memory log, versioned by timestamp ordering. The log is represented by
a std::vector(LogEntry). Thus, the version of the name directory is
simply the size of the vector. LogEntry is one of the following:

• NEW_NODE id ip_addr listen_port

where id is an unique incremental id generated by the binder, ip addr
is the ipv4 address of a server machine, and listen port is the port
number that the machine uses to listen incoming messages.

• KILL_NODE id

This entry removes entries that are related to the server machine of id.

• NEW_FUNC id func

This entry associates a function definition to the server machine of id.

Notice that a server always has up-to-date information about itself, because
each request that affects the binder’s name directory has a reply with the
changes attached. Also, when a server runs rpcExecute, it forces the
binder to broadcast NEW SERVER EXECUTE, which causes all servers to ask
the binder for the latest updates.

5.1 The Simple rpcCacheCall

The algorithm is the same as the one described by the specification. The
algorithm goes like this

1 let S be an empty set of integer ids
2 while local name directory has suggestions
3 // round-robin, same code as the binder
4 let i be the suggestion
5

12



6 if i is in S then break // reaching a cycle
7 otherwise let S = S union {i}
8
9 let server be resolve(i) from the name directory

10
11 start a scoped connection to server
12 if server is connected then
13 send EXECUTE request
14 return if got either OK or SKELETON_FAILURE
15 end if
16 end connection // happens automatically by RAII
17
18 end while loop
19
20 // local cache failed, so use the binder as fallback
21 run rpcCall and return whatever from it

Notice that the a set is used to detect cycles. That’s right, it is possible
that there alive servers but they reject the execute request due to having
no available worker threads (see optimization, the last section). To keen
readers, you may argue that returning the pivot is more efficient, which I
just realize at the time writing. That’s true, since the pivot wraps around
the container, so comparing i to the pivot is an easy way to detect a cycle.
But, but, but, NameService::suggest() is amortized Θ(n) (number of
candadates) anyways, to due std::advance, and running an extra Θ(log n)
for std::set::find and std::set:insert won’t hurt anyways, right?
In fact, had I store the iterator instead of a pivot the cost of suggest may
become amortized O(1). Well, I am just lazy to the change the codes.
Ok, I admit I am just high, since I haven’t used the listing environment since
taking my last algorithm course.

5.2 Cases When Name Directory Is Not Up-to-date

Recall my design decision that all remote connections are scoped. This means
the binder doesn’t know immediately when a server dies (for whatever un-
natural reasons). Thus, KILL NODE entries are added lazily to the logs when
the binder realizes a server is down. This means some entries actually can
be zombies. The binder knows whether a server live in the following circum-
stances:

13



• The binder broadcast NEW SERVER EXECUTE to every server.

• The client ask for a LOC REQUEST, which causes the binder to look
for a suggestion. To make a suggestion, the binder needs to probe
candadate servers by openning connections.

• The binder broadcast TERMINATE to every server. However, there is
no point to update the name server because the system is terminating.

Though, zombie entries are not problematic, because they only cause rpcCacheCall
to probe more servers, but not the binder. If a server tries to register a Name
that is already a zombie (with the same ip address and port), the binder
assigns a new id and replaces all old entries. For clients, there are 2 cases in
a successful probe:

• All records related to the server is still up-to-date (i.e. not zombies).
In this case, the client proceed with the call.

• Records related to the server are no longer up-to-date (i.e. zombies).
This only happens when a server is dead and it reboots, such that the
listen port is the same as before. There are 2 subcases:

– The server re-registers functions before the client tries to call them.
In this case, the server will accept the request and will run the call,
which is fine because the specification guarantees same function-
ality for each unique method across servers.

– The server is slow and the client catch on before registration is
complete. In this case, the server reply with the error FUNCTION NOT REGISTERED.
The client moves on to the next candadate.

In any case, I think it is reasonable to assume that servers stay up with little
down time, which makes the logs grow very little in rare occassion. So the
size of logs in each message is amortized O(1) – mostly consist of an integer
(zero) that represents the number of log entries and nothing follow after.

6 Optimization

In addition to the scoped connections, I did simple load balancing in rpcCacheCall.
If a client tries to probe servers that does not have free worker threads, the

14



servers reject the call. The client needs to move on until either 1) it finds a
server that has free worker threads, or 2) all candadates have been exhausted.
The latter case is the same case when all servers are perceived to be dead,
so rpcCall will be used as fallback. Notice rpcCall always forces the
server to add a task regardless of having free worker threads. In a sense,
this optimization may potentially increase the number connections, but it is
a fair tradeoff to reduce the convoy effect as much as possible.

15


